第608页

那么在这一瞬间,我们就可以知道在很远的另一个光子它的偏振方向是顺时针偏振的。

看到这里,或许有人就会觉得说。

那么量子纠缠看上去并没有什么特别的呀,那么为什么会被讨论的那么多?

量子纠缠的实验和前面那个经典世界里面的实验区别到底在哪里呢?

最主要的一个区别就是,在经典世界里面,在爆炸之后的那一瞬间,两个圆盘的状态就已经是确定了的。

无论我们在什么时间和位置去测量,得到的都会是同样的结果。

可是在量子纠缠的实验里面。

两个光子往相反方向飞行的途中,其中每一个光子的偏振方向并不是确定的。

而是处于50的概率顺时针偏振和50逆时针偏振相叠加的量子态。

你测量的结果有50的概率是顺时针偏振,有50的概率是逆时针偏振。

这个光子的状态只有在你测量的时候才能确定,而且完全是一个概率性事件。

这代表着什么呢?

最关键的地方来了。

就是说你测量了其中一个光子,这一个光子的状态坍缩成了比如说顺时针偏振。

在遥远地方的另一个光子,它的状态就同时坍缩成了确定的逆时针偏振。

仿佛这两个光子间有一个可以超越光速的联系,可以让它们瞬间可以达成共识。

具体的实验过程就是纠缠光子对利用二类bbo晶体的自发参量下转换,可以产生两个偏振态正交的纠缠光子对。